Por Adrián Paenza
De la sección ¿Para qué sirve la matemática?, de su libro Matemática para todos. Vía librosmaravillosos.com, preparado por Patricio Barros.
No sé si usted escuchó hablar alguna vez de un “reloj atómico”. Lo más probable es que no. ¿Qué podrá tener un reloj para que se lo considere “atómico”? Bueno, el hecho es que la precisión de estos aparatos es verdaderamente imposible de creer. El nivel de tolerancia es el siguiente: a lo sumo pueden adelantar o retrasar no más de un segundo en los próximos... ¡60 millones de años! Un reloj atómico puede dar la hora con un nivel de exactitud de un nanosegundo, o sea, de una mil millonésima de segundo [10] .
Como se advierte, son muy precisos, casi exactos. Eso sí, las preguntas que surgen inmediatamente son: ¿a quién podría interesarle tener uno de estos relojes?, ¿para qué podría necesitarlo usted?, ¿o yo?, ¿quiénes tienen o usan estos relojes?, ¿existen de verdad?
Sí, existen, y más aún: aunque usted no lo advierta, la existencia de esos relojes tiene una incidencia muy particular en nuestra vida cotidiana. Hace falta ese tipo de precisión para que funcione el sistema de navegación que provee el GPS.
Vayamos por partes. ¿Qué quiere decir GPS? En principio, GPS es la sigla (en inglés) con la que se conoce al sistema de posicionamiento global (Global Positioning System).
A lo largo de la historia, uno de los problemas a resolver con los que se enfrentó el ser humano fue el de poder determinar su posición en la Tierra: ¿dónde estoy? Mirar hacia el sol y las estrellas, buscar puntos de referencia o encontrar invariantes fueron motivo de largas búsquedas. Con la tecnología actual, el problema está resuelto para siempre. Sí, pero ¿cómo?
Acá necesito pedirle un favor: le invito a que me siga en una pequeña cadena de argumentos. Si por cualquier motivo siente que se perdió, pare, retroceda y lea nuevamente hasta entender. Si yo pude entender, usted también. No se deje asustar porque el recorrido es sencillo, aunque no sea el que ni usted ni yo estamos acostumbrados a hacer habitualmente. Por eso el desafío, y créame que vale la pena. Acá va [11] .
Voy a usar una idea del matemático portugués Nuno Crato, profesor de la Universidad Técnica de Lisboa. El crédito le corresponde todo a él. Supongamos que usted se perdió en algún lugar de la selva en donde hay distribuidas algunas poblaciones. Cada pueblo tiene una iglesia, y cada iglesia hace sonar sus campanas una vez por hora: a las 12, a la 1, a las 2, y así siempre... las 24 horas del día. Para seguir con las condiciones ideales, supongamos, además, que el sonido de las campanas viaja por el aire y llega a todas partes. Es decir, el tañido de las campanas se escucha en todos los lugares de esa zona.
Pero usted está perdido y no sabe dónde está. Lo bueno es que usted tiene un reloj. En ese reloj pulsera, usted ve que son las 3 de la tarde exactas. De pronto, escucha el sonido de una campana. Pero ya no son las 3. Pasaron 17 segundos en su reloj. Son las 3 horas y 17 segundos. Eso quiere decir que, desde alguna iglesia, el sonido tardó 17 segundos en llegar hasta usted. Como la velocidad del sonido (aproximada)[12] es de 340 metros por segundo, eso significa que el sonido recorrió (340 x 17) = 5,780 metros hasta llegar a usted. Casi 6 kilómetros. Si uno trazara una circunferencia de radio 5,780 metros con centro en esa iglesia, usted sabe que está parado en algún lugar de esa circunferencia.
Primer dato entonces: usted sabe que uno de los pueblos está a unos 6 kilómetros de distancia de su posición.
De pronto, usted escucha otra campana y se fija inmediatamente en su reloj. Esta vez, el sonido tardó 26 segundos en llegarle. Luego, haciendo el mismo cálculo, usted sabe que ese sonido recorrió (340 x 26) = 8,840 metros desde las 3 de la tarde. O sea, hay otra iglesia, de otro pueblo, que está a casi 9 kilómetros de donde está usted. Eso significa que si trazáramos otra circunferencia con centro en esa iglesia, de radio 8,840 metros, usted está en algún lugar de esa circunferencia.
En consecuencia, usted tiene que estar en alguno de los dos puntos en donde se cruzan esas circunferencias. No sabe en cuál de los dos (todavía), pero está en alguno de los dos. Por último, si usted pudiera escuchar el sonido de una tercera campana y repitiera el procedimiento anterior, eso le quitaría todas las dudas y diría en cuál de los dos puntos anteriores estaba parado.
Como usted ve, el procedimiento no es complicado. Me tuvo que conceder algunas licencias para llegar hasta acá, pero no fue difícil. Uno se lo puede imaginar sin problemas, siempre y cuando aceptemos que todo esto está sucediendo sobre una superficie plana, es decir, en dos dimensiones y todos los pueblos están sobre esa misma superficie.
Ni bien usted agrega una tercera dimensión (además del largo y el ancho, también la altura, ya que vivimos en un espacio tridimensional), entonces, los círculos se transforman en esferas y para resolver bien el problema haría falta una cuarta iglesia. Pero lo que me importa es trasladar la idea del funcionamiento y no las condiciones exactas, que ciertamente son distintas de las planteadas en el ejemplo de las iglesias y las campanas.
Ahora quiero volver al GPS. El sistema GPS consiste de tres elementos: una red de satélites, estaciones terrenas de control de esos satélites y receptores (que son los que usamos nosotros, como si fueran receptores de radio o de televisión).
En el caso del GPS, los que hacen el papel de las campanas de las iglesias, son los satélites. En realidad, son 24 satélites, que se conocen con el nombre de Navstar. Las órbitas que describen están ubicadas en seis planos y permiten garantizar que en cualquier lugar de la Tierra que usted se encuentre, podrá recibir las señales que emitan por lo menos cuatro de esos satélites [13] .
El primero de ellos fue lanzado en 1978 y el último, el 26 de junio de 1993. Cada uno pesa unos 900 kilos, tiene el tamaño de un automóvil mediano y gira alrededor de la Tierra a 18,000 kilómetros de altura. La velocidad a la que avanzan les permite dar dos veces la vuelta al mundo por día. Los fabricó la empresa Rockwell International.
Cada satélite transmite una señal de radio digital en forma continua que indica dónde está el satélite en cada momento y la hora en la que está enviando la señal, con la precisión de un nanosegundo. Piense que un “nanosegundo” significa 0.000000001 de segundo, o sea, una “mil millonésima parte de un segundo”. Como se ve, hace falta la precisión que solamente un reloj atómico puede ofrecer.
Ahora, volvamos a usted. ¿Qué necesita para poder conocer su posición sobre la Tierra? Necesita tener un aparato que pueda leer e interpretar las señales que envían esos satélites. Ese aparato es el que ahora viene incluido en varios teléfonos celulares inteligentes o en algunos autos o embarcaciones, y, por supuesto, imprescindible hoy para la aeronavegación.
Usted enciende su aparato receptor (que voy a llamar GPS) y quiere saber dónde está. Su GPS recibe las señales de por lo menos cuatro de los satélites. Ahora le pido que me siga con este razonamiento. Cada señal que su aparato recibe indica la hora exacta en la que fue emitida por cada satélite. Obviamente, como los satélites están en órbitas diferentes, están a distancias distintas del aparato que usted está usando. Por lo tanto, tardan distintos tiempos en llegar a usted.
Uno podría decir, “sí, pero ¿cuánta puede ser la diferencia?”. MUCHA. Es que si bien las señales viajan a la velocidad de la luz (que es de 300 mil kilómetros por segundo), igualmente, algo tardan. Y cada señal tarda un tiempo diferente porque es emitida por un satélite diferente (como antes eran las campanas de las distintas iglesias). Esas DIFERENCIAS son las que permiten calcular su posición con un error de algunos metros. Por ejemplo, si la hora en la que el satélite emitió su señal es una milésima de segundo anterior a la hora de su GPS, entonces eso indica que usted está ubicado a 300 kilómetros del satélite [14] .
Si dos personas están ubicadas aun a una cuadra de distancia, el tiempo que tarda la señal desde cada satélite es diferente, aunque “infinitamente pequeño”. Ser capaz de poder detectar esa sutil diferencia, es lo que permite distinguir que uno está en un lugar y otra persona a 100 metros de distancia. Lo notable, entonces, es haber logrado ese nivel de precisión, que es medido en nanosegundos y, por lo tanto, detectables solamente por los relojes atómicos.
¿Por qué hacen falta las señales de cuatro satélites? Porque como ninguno de nosotros anda con un reloj atómico por la calle (son muy caros y muy escasos también), tres de los satélites aportan los datos que hacen falta para calcular la latitud y la longitud, pero el cuarto es el que funciona como factor corrector de nuestro reloj. De esa forma evita que uno tenga que llevar en su muñeca un reloj de esas características. Alcanza con que su aparato de GPS tenga un buen reloj de cuarzo, que ahora son muy baratos.
Si usted tiene un receptor de GPS en su automóvil o en su teléfono celular, ahora sabe que ese aparatito sirve para recibir las señales de los (por lo menos) cuatro satélites y, de esa forma, le alcanza para determinar su posición con un margen de error de algunos metros. Para garantizar ese tipo de precisión, cada satélite está equipado con cuatro relojes atómicos que le permiten calcular el tiempo con una precisión que no existió jamás.
La posibilidad de haber accedido a este tipo de tecnología se produjo por la intervención de científicos de distintas áreas: ingenieros, físicos, matemáticos, entre otros. Cada uno de ellos fue pensando en cosas distintas, y posiblemente no imaginaron que su producción en ciencia básica tendría una aplicación tan determinante en nuestra vida cotidiana.
Por eso, cuando uno se tropieza con alguien que dice “¿y para qué podría querer uno tener tanta precisión?”, es posible que la respuesta no sea inmediata, pero el tiempo y la evolución del hombre llevan a pensar que uno, a veces, está contestando preguntas futuras y no solamente las actuales. Y de eso se trata: de producir ciencia todos los días [15] .
Notas:
[10] Se llama reloj atómico a un dispositivo que sincroniza una oscilación eléctrica con la oscilación de la radiación emitida en la transición entre los dos niveles hiperfinos de un átomo de cesio 133. Justamente, la precisión se origina en que la radiación emitida por estos átomos es siempre la misma y por eso puede usarse para definir un segundo patrón para medir el tiempo. Desde el año 1967, el Sistema Internacional de Unidades adoptó oficialmente como un segundo a la duración de 9.192.631.770 períodos de la radiación emitida por el Cesio 133.
[11] El detalle completo de cómo funcionan el GPS y los relojes atómicos se puede encontrar en un artículo escrito por el físico Daniel Kleppner, del Research Laboratory of Electronics at MIT (Laboratorio de Investigaciones en Electrónica del MIT, Instituto de Tecnología de Massachusetts) en la revista Science del 28 de marzo de 2008, Vol. 319, N° 5871, págs. 1768-1769.
[12] La velocidad del sonido es aproximadamente de 1.230 kilómetros por hora, o bien —según la temperatura y de la altura con respecto al nivel del mar— de 340 metros por segundo. Es decir, el sonido recorre 340 metros cada segundo.
[13] Los satélites emiten ondas electromagnéticas, que no son sonoras por cierto. Estas ondas viajan a la velocidad de la luz, que es de 300.000 kilómetros ¡por segundo! El ejemplo de las iglesias y el tañido de las campanas es sólo una licencia que me permite presentar el problema.
[14] Sucede que al ser la velocidad de la luz de 300 mil kilómetros por segundo, si hay una milésima de segundo entre la emisión de la señal y la recepción, eso significa que esa señal viajó 300 kilómetros. Aunque parezca increíble, en un nanosegundo, la luz viaja ¡30 centímetros!
[15] En realidad, como usted advierte, el cuarto satélite se utiliza como “corrector” y pareciera como que invalida la necesidad de tener cuatro satélites por el hecho de vivir en un mundo tridimensional. Sin embargo, en esencia, el GPS nos provee de la latitud y la longitud, como si viviéramos en un mundo plano, a pesar de que el sistema podría proveer la “altura” también, si fuera necesario.
No hay comentarios.:
Publicar un comentario